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A B S T R A C T

Residential consumers in the U.S. have demonstrated a growing interest in rooftop photovoltaic (PV) systems,
resulting in increased adoption over the last decade. However, this has diminished utility revenues, and pol-
icymakers have expressed concerns about inequitable consumer access to publicly-funded rooftop PV adoption
incentives. In response to these concerns, policymakers and utility companies are changing their policies to
discourage rooftop PV adoption. Alternative renewable energy models, such as utility-provided community solar
programs, offer a potential solution. However, when designing such programs, it is important to consider the
potential impacts on different system stakeholders, including utilities, policymakers, and solar installers. This
paper describes an agent-based model that predicts the performance of different residential distributed solar
models with respect to these stakeholders' objectives. In this model, consumer agents residing in an urban utility
territory decide in each time-step whether they will adopt a particular renewable energy model, and the impacts
of their adoption decisions on stakeholder performance metrics are captured over time. Simulation results
suggest that if community solar program premium prices are set appropriately, all stakeholders can benefit: the
utility can recover part of its revenue losses even as rooftop PV adoption increases, solar installers’ businesses
can thrive, and increased renewable energy adoption can be achieved equitably. The proposed modeling
methodology can help to inform design decisions of distributed solar energy models that avoid benefiting some
stakeholders at the unnecessary expense of others.

1. Introduction

Over the last decade, there has been tremendous growth in dis-
tributed generation in the U.S. residential energy sector. Recent ad-
vances in renewable energy technology, coupled with increased con-
sumer awareness and interest, are yielding a shift in the electricity
market from a centralized generation system to a distributed and con-
sumer-driven model [1]. Specifically, solar photovoltaic (PV) tech-
nology has become increasingly popular among U.S. residential energy
consumers as PV panels have become more reliable and less expensive
[2]. PV systems on owner-occupied houses (known as rooftop PV) allow
consumers to generate their own electricity, thereby enabling them to
lower their energy bills, gain ownership and control of the energy in-
frastructure, and reduce their environmental impact.

However, as more consumers are generating their own energy using
rooftop PV systems, utility companies’ revenues have declined [3].
Furthermore, not all residential buildings are suitable for rooftop PV
installation, many U.S. households are renters, and high installation
cost limits access to higher-income households [4–6]. This has caused
concern among policymakers about inequitable access to rooftop PV

and its associated benefits, which include publicly-funded incentives
[7]. In response to these concerns, many policymakers and utility
companies are changing their policies to discourage rooftop PV adop-
tion [8]. With fewer government rebates available and waning utility
support for grid interconnection, fewer consumers are adopting rooftop
PV. As a result, despite several years of positive growth, the installed
capacity of residential solar in the U.S. fell by 14% in 2017 [9].

Alternative renewable energy models, such as utility-provided
community solar programs, offer a potential solution. Under a com-
munity solar program, the generation of solar energy does not occur at
the consumer's home. Instead, the consumer subscribes to a portion of a
shared PV facility located elsewhere in the community. Such programs
allow renters and homeowners who cannot install PV systems due to
structural or shading issues to access renewable energy, while allowing
utilities to retain their customers and revenues. However, community
solar could fail to address policymaker concerns about equitable access
if the program is priced inappropriately, and it could also have a ne-
gative impact on solar installers' revenues if consumers substitute
community solar for rooftop PV.

This paper proposes an agent-based approach to modeling consumer
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adoption behavior in the presence of competing renewable energy
models (i.e., rooftop PV and community solar), such that the impacts on
multiple stakeholder objectives can be understood. Agent-based mod-
eling is a powerful computational tool that can be used to examine
sociotechnical system performance over time, wherein system behavior
is subject to complex and dynamic individual human behaviors and
social interactions. The conceptual agent-based model (ABM) described
in this paper is a novel approach to designing urban residential re-
newable energy systems that equitably satisfy consumer demand while
maintaining solar installers and utility revenues. Fulfilling the con-
flicting and competing objectives of these key stakeholders will support
the overarching goal of greater renewable energy deployment in the
energy sector.

The paper is structured as follows: Section 2 provides a review of the
relevant literature, Section 3 describes the ABM, Section 4 describes the
experiments performed using the model, Section 5 summarizes the
experimental results, Section 6 discusses the results and their practical
implications, and limitations of this work, and Section 7 concludes the
paper.

2. Background and literature review

In a net metering program, consumers' meters are allowed to run
backwards if the electricity generated by their PV systems is more than
they consume. Even many of the currently installed residential rooftop
PV systems in the U.S. with storage (approximately 60%) are also grid-
connected [10], which allows consumers to net meter their energy bills.
The net metered solar power from rooftop PV systems helps utility
companies to meet their required renewable portfolio standard (RPS),
under which they are mandated to provide a percentage of their elec-
tricity supply from renewable energy technologies [11]. Overall, how-
ever, utility companies view their customers' rooftop PV installations as
a source of lost revenue [12]. Rooftop PV adoption also increases uti-
lities’ operational costs. Because the electricity grids were not originally
designed for the dual-flow of electricity, increased rooftop PV adoption
has required utilities to make significant upgrades to the transmission
and distribution infrastructure to ensure safe PV systems operation and
maintain grid reliability [13]. Additionally, utilities retain responsi-
bility for providing solar-powered consumers with energy if their sys-
tems fail or if their energy needs increase.

In response, utilities have increased electricity tariffs. These in-
creased tariffs create an unfair financial burden on consumers who do
not have the ability to install rooftop PV, and they can result in a
feedback loop in which PV adoption accelerates, yielding further tariff
increases [14]. Utilities are also discouraging rooftop PV adoption by
changing their net metering policies, which has had a negative impact
on utility-customer relationships [8]. For example, the Indiana Reg-
ulatory Public Commission is considering replacing its current net
metering policy with a “buy-all, sell-all” option, in which consumers are
charged for their consumption as per the utility's current electricity rate
structure and are paid for the electricity generated by their PV systems
at the much lower wholesale electricity rates [15].

Increased rooftop PV adoption has also led to equity concerns
among policymakers. Publicly-funded incentives have been created that
encourage residential rooftop PV adoption, including federal and state
income tax credits and property and sales tax exemptions. However, the
high up-front cost of purchasing and installing rooftop PV has limited
access to higher income households: the median income of U.S. rooftop
PV adopters is $32,000 higher than the average U.S. household income
[4]. Although leasing and solar power purchase agreement (PPA) op-
tions attempt to address this issue by eliminating the need for high up-
front investment, most U.S. house-owners are still unable to install
rooftop PV systems because of structural, shading, or roof ownership
issues. In the U.S., only 57% of all residential buildings are suitable for
rooftop PV installation [6], and 36% of the U.S. households are renters
[5] who do not own the roof space needed to install PV panels.

Community solar programs have the potential to address both utility
and policymaker concerns. In a utility-sponsored community solar
model, the utility owns and/or operates a project that is open to vo-
luntary ratepayers [16]. The geographic proximity of community solar
subscribers to the solar installation varies by program; for example, the
utility can require subscribers to be in the same utility territory, county,
or neighborhood as the solar installation [17]. Offering customers the
opportunity to invest in a community solar program can help utility
companies to stabilize their revenues, increase the renewable sources in
their energy portfolios, increase customer satisfaction and engagement,
address customer demand for renewable energy, make a transition to-
ward clean energy, and enhance overall grid power quality via a small
number of large-sized distributed generating units, as opposed to nu-
merous small rooftop PV systems [18,19]. In addition, as consumers
become investors in the creation of new energy infrastructure and uti-
lities maintain control over it, utility-customer relationships can im-
prove [20].

Community solar also expands the availability of distributed solar
power to a broader range of consumers. For example, lower-income
energy consumers who may not be able to afford rooftop PV can invest
in a shared PV system according to their financial ability [21]. Renters
and homeowners who are unable to install rooftop PV because they do
not own the roof, or because the roof is ill-suited for panels, can also
access solar electricity through community solar programs, with the
flexibility of selling their subscription when they move or having their
solar credits follow them [21]. Community solar is also a viable alter-
native for consumers who are interested in supporting renewable en-
ergy but do not wish to install rooftop PV on their houses because of the
perceived complexity of installation procedures and required paper-
work, the possibility of moving residences in the future, risk of roof
damage, and high investment uncertainty associated with installation
[22,23].

However, the success of a community solar program depends on the
degree to which its design meets consumer needs and requirements. It is
important for the provider (e.g., the utility company) to be able to
predict its customers' response to program design parameters, including
capacity and duration, household participation limits, payment terms
and conditions, site selection, and subscription transfers [20]. Pre-
dicting consumer participation requires consideration of consumers'
heterogeneous preferences and objectives, which include reducing en-
ergy costs, protecting the environment, gaining independence from
utility companies, and investing in their homes [24]. Consumer de-
mographics are also known to influence renewable energy adoption
decisions. For example, many consumers install rooftop PV just before
retirement, coinciding with decisions about whether to stay in their
homes [25]. Adoption decisions are also often socially motivated, in-
fluenced through peer interactions, online media, and seeing solar pa-
nels on neighbors' rooftops [26,27]. Social networks play a crucial role
in providing consumers with relevant information to inform their de-
cisions, including the available options, which supplier to choose, and
financial incentives [28]. Therefore, consumers’ preferences may also
evolve over time as they learn more about different renewable energy
models from their friends, family and neighbors.

Agent-based modeling is a method that is well-suited to studying the
system-wide effects of individual energy consumers’ heterogeneous
behaviors, boundedly rational decision processes, and social interac-
tions on energy technology adoption over space and time [29]. ABMs
consist of individual software entities, generally referred to as “agents”,
that are situated in a virtual environment [30]. An agent may represent
an individual entity (i.e., single consumer) or an aggregate of in-
dividuals (e.g., household). Agents may be assigned heterogeneous at-
tributes, preferences, objectives, and behavioral rules in the form of
mathematical and/or logical statements, which inform their decisions
about the most appropriate action to take in a given situation. Agents
can also be programmed to interact with each other and their en-
vironment, which can in turn influence future decisions and behaviors

A. Mittal, et al. Renewable and Sustainable Energy Reviews 112 (2019) 1008–1020

1009



through a process of dynamic adaptation. The interactions of decisions,
actions, and adaptations among many agents within the same system
are non-linear and can result in an overall system-wide behavior that
emerges over time [31]. Such emergent system behavior can be difficult
to predict without the use of ABM.

ABM has been used to study the effect of consumer behavior on
sustainable energy technology adoption [32]. For example, an ABM was
developed to understanding the discrepancy between consumers' opi-
nions and their actual participation in dynamic electricity tariffs pro-
grams [33]. Rai and Robinson [34] developed an ABM to predict the
effects of different rebate programs on residential rooftop PV adoption
rates in Austin, Texas, wherein household agent adoption decisions
depend on their demographic, attitudinal, and economic character-
istics. ABM was also used to study the impact of factors such as geo-
graphic location and lifestyle on households’ green tariff adoption de-
cisions [35].

While existing models account for heterogeneous consumer beha-
vior, they do not examine the effects of consumer adoption on the
conflicting and competing objectives of other key energy system sta-
keholders, nor do they consider multiple competing renewable energy
models, such as rooftop PV and community solar [36,37]. Also, these
existing models are specific to a particular geographic location, such
that it is difficult to generalize the findings [38]. Thus there is a need to
develop conceptual models to demonstrate the capacity of ABM for
energy transition studies [38]. A conceptual model is a structured re-
presentation of a system that has the purpose of understanding the
system's behavior through a consecutive description of all relevant
entities [39]. A conceptual ABM can serve as the basis for the future
development of more sophisticated and geographic-centric models via
interdisciplinary collaboration (e.g., between social scientists, en-
gineers, and policymakers) for the purpose of studying the implications
of introducing new policy, planning, and/or technology. This paper
describes a conceptual agent-based model for designing a residential
renewable energy system, allowing for consumer adoption of multiple
models and taking into account the objectives of utilities, solar in-
stallers, and policymakers to enable conflict-free energy system de-
centralization. The City of Des Moines, Iowa, is used as an example to
develop the model.

3. Agent-based model

The ABM was developed using NetLogo 6.0.4 and is described using
the Overview, Design concepts and Details (ODD) protocol [40].

3.1. Purpose

The purpose of this model is to predict consumer adoption of dif-
ferent renewable energy models and to determine the resulting impacts
on energy system performance, in terms of key stakeholders’ metrics.
Examples of stakeholder metrics include present value of utility and
solar installer revenues, total green power added to the grid, and total
consumer participation in renewable energy models in each simulated
time-step. A complete list of stakeholder metrics captured from the
ABM is provided in Section 4.2. Model outputs can be used to inform
energy system design decisions in support of individual stakeholder
objectives and the overarching objective of increasing renewable en-
ergy deployment.

3.2. Entities, state variables, and scales

This conceptual model contains 300 residential consumer agents
that reside in the territory of a single hypothetical utility company. The
description of state variables associated with the consumer agents, their
possible values and data sources are summarized in Table A1 of Ap-
pendix A. Each agent has a unique identification number (i), as well as a
community identification number (Ci) that corresponds to the

community in which the agent resides. Communities 1 through 7 con-
sist of 70, 30, 20, 70, 40, 30, and 40 agents, respectively. These values
were chosen as a proof of concept in using the model to design a re-
newable energy system at an urban scale.

Each consumer agent is characterized by four demographic factors:
age (Ai), income (Ii), education (Ei), and race (Ri), with values assigned
using probabilities derived from publicly available demographic data
for the City of Des Moines, Iowa [41]. The values of Ii, Ei, and Ri remain
constant throughout each simulation run, while Ai increases as simu-
lated time progresses. Each agent is also categorized as being either a
house-owner, a renter, or an apartment-owner, and this assignment
remains constant throughout each simulation run. Of the 300 consumer
agents, 174 (58%) are house-owners and 126 (42%) are either renters
or apartment-owners, based on the City of Des Moines demographic
data. It is assumed that only house-owner agents buy/lease rooftop PV
panels, while house-owner, renter, and apartment-owner agents can all
adopt community solar. However, only 57% of the house-owner agents’
homes are modeled to be structurally capable of accommodating
rooftop PV, based on data from Ref. [6].

The distribution of home sizes (in terms of number of bedrooms) for
the City of Des Moines was used to assign agent home size values [42].
The average monthly residential electricity consumption in Iowa of
831 kWh [43], was then used to assign each agent a monthly electricity
consumption value (Qi), which is proportional to its home size. The
model does not take into account the adoption of energy efficiency
measures; therefore, each consumer agent's electricity consumption is
assumed to be constant throughout each simulation run.

3.3. Model overview

In each monthly time-step, each consumer agent decides between
two courses of action: buy electricity from the utility or adopt one of
four different renewable energy models (buy rooftop PV through up-
front cash payment, buy rooftop PV through solar loan option, lease
rooftop PV from a solar installer, or enroll in a utility-sponsored com-
munity solar program). This decision is driven by the agent's financial
position, its attitude toward solar electricity, its demographic attributes,
influence from other agents in its social network and geographic vici-
nity, and information received from the utility company and solar in-
stallers.

3.4. Basic principles

The various financial, attitudinal, and demographic factors that
drive the consumer agents' decisions to adopt a renewable energy
model were shortlisted through a review of existing empirical studies
that have identified consumers' motivations for adopting renewable
energy [23,25,44,45]. These are described in detail in the sub-models’
descriptions below.

3.5. Emergence

Consumer agents' decisions to adopt a particular renewable energy
model influence other agents’ decision via their interactions, yielding
emergent system performance [26,34], in terms of stakeholder metrics
(e.g., utility/solar installers revenue and equitable consumer access to
renewable energy).

3.6. Adaptation

As the attributes of a consumer agent and its environment change
over time, its position on adopting a renewable energy model adapts
accordingly. For example, changes in electricity prices, PV installation
cost, and available tax credits all influence an agent's adoption like-
lihood. Further, as agents interact and learn from one another about
renewable energy options (e.g., community solar), environmental
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benefits of solar, and PV installation procedures, their adoption deci-
sions may change. In addition, as agents near retirement, they become
increasingly likely to adopt rooftop PV.

Utility companies and policymakers are not represented as agents in
this model. Therefore, it is assumed that their respective pricing/tax
credit policy parameters do not adapt over the course of a simulation
run.

3.7. Objectives

Each consumer agent's fundamental objectives are to lower its en-
ergy bills and to contribute to a social cause by adopting renewable
energy. The achievement of these objectives is informed by the agent's
financial position and attitudinal and demographic factors.

3.8. Interactions

Agents interact via visual interactions and information exchange.
Research on consumer rooftop PV adoption shows that regions with
more rooftop PVs have a greater likelihood of adoption [26]. To capture
this, visual interactions (i.e., seeing PV panels on a neighbor's roof)
between agents can occur as follows: if a house-owner agent adopts
rooftop PV, in the next time-step every other agent within its commu-
nity becomes aware, and their likelihood of participating in a renew-
able energy model (rooftop PV or community solar program) in future
time-steps increases.

The second type of interaction involves the exchange of information
(e.g., about the availability of a community solar program) between
agents within their social networks, which can occur between agents of
the same as well as different communities. To create the agents' social
network, a small-world network was generated using the Watts-Strogatz
algorithm [46]. A small-world network structure is considered appro-
priate for representing consumer social behavior with respect to re-
newable energy adoption [34,47]. A small-world network is char-
acterized by the number of nodes in the network (n), the number of
neighbors a node has (K), and rewiring probability (p), with which the
right end of an arc connected to a node is rewired uniformly randomly
to any of the other nodes [48]. In this model, the number of nodes is
equal to the number of consumer agents (n=300), each node is as-
sumed to be connected to its immediate neighbors (K=2), and the
rewiring probability (p) is varied experimentally. Each of the links
connecting two consumer agents j and k is assigned a similarity index
(Simijk) using (1). Because consumer similarity (i.e., homophily) is a
predictor of the strength of interactions within a social network [49], it
is assumed that higher Simijk values will yield more influential inter-
actions. It is assumed that Simijk is indirectly proportional to the dif-
ferences in the agents' age (Ai), income (Ii), education (Ei), and race (Ri).
The maximum possible value of similarity contributed by each demo-
graphic factor is 0.25, which occurs when two agents are at the same
level for that factor. The minimum possible value of similarity con-
tributed by each demographic factor is 0, which occurs when the two
agents are at opposite ends of the factor's range (e.g., age levels 0 and
6). One exception is the race factor: Rjk is 0 if the race of agents j and k
are the same; otherwise, it is assigned a value of 1.

= + + +Simi
A A I I E E R

0.25
24

0.25
60

0.25
20

0.25
4jk

j k j k j k jk

(1)

3.9. Observations

Consumer agents’ decisions to adopt rooftop PV and community
solar are captured in each monthly time-step. The present value of
utility company and solar installers revenues are also recorded, as well
as system-wide green power addition (kW).

3.10. Initialization

At the beginning of the simulation run, each consumer agent is in-
itialized to be a non-adopter that buys electricity from the utility
company. The electricity cost is set to the current average electricity
rate for Iowa, i.e. 13.23 ¢/kWh [50]. This cost is assumed to increase by
1.67% annually [51]. The income tax credit (ITCt) associated with
buying rooftop PV (total of federal and State of Iowa) is initialized to
45% and reduces to 39% after 12 time-steps, to 33% after 24 time-steps,
and to 0% after 36 time-steps, which reflects current federal and State
of Iowa rebate policies [52].

3.11. Sub-models

The ABM contains three sub-models and all three are executed in
each monthly time-step for each consumer agent.

3.11.1. Sub-model 1 – consumer agent attitude assessment
Each consumer agent is assigned an initial awareness index (AWi)

on a 0–1 scale, which represents the agent's overall awareness of re-
newable energy and its environmental benefits. Because individuals
with more education are more likely to adopt renewable energy [44],
the initial value of AWi is assigned as the normalized product of an
agent's education level (Ei) and a random number (p) between 0 and 1,
such that = +AWi

p E( 1)
6
i . Larger values of AWi correspond to a greater

probability that an agent will adopt a renewable energy model. If a
house-owner agent adopts rooftop PV, the value of AWi for each non-
adopter in its community increases by one percent of its maximum
value (a consequence of visual interactions). The value of AWi for a
non-adopter also increases if it interacts with an adopter in its social
network. The amount of increase is determined by (2), where AWj(before)

and AWj(after) are non-adopter agent j's awareness index values before
and after the interaction, AWk is the adopter agent k's awareness index,
and Simijk is the similarity index value of the link between agents j and
k.

= +AW AW
AW Simi

100j after j before
k jk

( ) ( ) (2)

The awareness index of an agent also increases if it attends a solar
installer's renewable energy fair (focused on rooftop PV) and/or a uti-
lity-sponsored renewable energy seminar (focused on community solar)
[25]. Only house-owner agents that can adopt rooftop PV can attend a
renewable energy fair, but any agent can attend a seminar. In each
time-step the likelihood that an agent will attend a fair/seminar de-
pends on AWi, where a higher value corresponds to a greater prob-
ability of attending. If an agent attends a fair/seminar, AWi increases by
0.1. An agent that attends a seminar becomes aware of community
solar, such that its value of CSi, updates from 0 (unaware) to 1 (aware).
If agent j is aware of community solar and interacts with agent k via its
social network, agent k also becomes aware of community solar, irre-
spective of attending a seminar. An agent can attend a fair/seminar
only once during a simulation run.

Consumers tend to consider rooftop PV purchase to be a complex
issue, because of the effort required to learn about installation proce-
dures, incentive policies, net metering policies, house-owners’ associa-
tion regulations, and the required paperwork [23]. However, when a
consumer leases solar panels or adopts community solar, a project de-
veloper assumes these responsibilities. Each house-owner agent is in-
itially assigned a random perceived complexity index (PCi) value on a
0–1 scale. Lower values of PCi correspond to greater probabilities that
an agent will buy rooftop PV. If a non-adopter attends renewable en-
ergy fair, PCi decreases by 0.1. This value also decreases if non-adopter j
interacts with a rooftop PV buyer k via its social network, based on (3).
PCj(before) and PCj(after) are agent j's perceived complexity index values
before and after the interaction, PCk is the perceived complexity index
of agent k, and Simijk is the agents' similarity index.
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=PC PC
Simi PC(1 )

100j after j before
jk k

( ) ( ) (3)

Each house-owner agent is also randomly assigned an ownership
index (Oi) on a 0–1 scale, where higher values of Oi correspond to
stronger agent preference for rooftop PV over community solar. This
value remains constant throughout the simulation run. Lastly, each
house-owner agent is assigned an age-based index (ABi) on a 0–1 scale,
based on its current age level (Ai). ABi is evaluated by normalizing to 1
the product of Ai and a random number q, such that = +ABi

q A( 1)
7
i .

Higher values of ABi correspond to greater probabilities that the agent
will buy/lease rooftop PV, because consumers tend to adopt rooftop PV
as they approach retirement [25].

3.11.2. Sub-model 2 – consumer agent financial assessment
Agents are classified into four agent types (Tx) based on their op-

timism towards solar electricity [45], where larger values of the index x
correspond to greater optimism toward solar power's financial pro-
spects. Tx represents an agent's expectation of future electricity cost
growth (PGi) and annual rooftop PV maintenance costs (PMi), as a
percentage of up-front investment. Table 1 provides values for PGi, and
PMi for each agent type, adapted from Ref. [45]. An affordability factor
(AFi) on a 0–1 scale is also assigned to each house-owner consumer
agent by normalizing to 1 the product of its income level (Ii) and a
random number r, such that = +AFi

r I( 1)
16
i . A higher AFi corresponds to a

greater probability that the agent can afford to pay the high up-front
cost of purchasing solar panels.

Each consumer agent evaluates the financial viability of a renew-
able energy model by calculating its net present value (NPV) in each
time-step. An agent will only evaluate NPV of models that are feasible
for it to adopt (as summarized in Table 2), and it is assumed that a
consumer agent will evaluate the NPV of participating in a community
solar program only if it is aware of it (CSi=1). Based on hourly solar
PV insolation and temperature data for the City of Des Moines from
1999 to 2010, it is assumed that 109 kWh of energy is generated each
month by each kW (DC) of solar panel installed through either rooftop
PV or a community solar program [53]. Further, it is assumed that if an
agent decides to buy/lease rooftop PV or subscribe to community solar,
it will choose a PV module of size Si that meets 100% of its monthly
energy requirements (Qi).

NPV (buying rooftop PV through up-front cash payment) – The present
value of rooftop PV installation cost (Pb(install),i) for a house-owner agent
i at time t is given by (4), where Si is the size of the solar panel array (in
kW, DC) required by the agent to meet 100% of its energy needs (Qi
(AC)),Wt is the installation cost ($/kW (DC)), and ITCt is the income tax
credit percentage (federal and state) at time t. It is assumed that an
agent's minimum tax liability in the year of purchasing rooftop PV is
greater than or equal to the corresponding tax rebates it gets from
purchasing rooftop PV. Therefore, the income tax credit is not dis-
counted to evaluate the present value of the installation cost. Wt is
initialized to be $3430/kW [54], and this value decreases by 6% an-
nually, based on the average decline in residential sector installation
prices in the U.S. between 2000 and 2016. It is assumed that the utility
allows customers to offset 100% of the energy generated by their
rooftop PV systems, as per the current net metering policy in Iowa.

An agent's present value of future monthly bill savings (Pb(mbs),i)
from buying rooftop PV, evaluated over 25 years (the average life of
solar panels), is given by (5). Pb(mbs),i is calculated by discounting (by
annual discount rate d, assumed to be 5%) the annual electricity costs
for 25 years that the agent would have paid to the utility if it had not
installed rooftop PV. An agent's annual electricity cost is evaluated by
multiplying the number of months in a year by its monthly consump-
tion (Qi) and the current electricity rate (Ct), where Ct increases an-
nually based on the agent's expected growth rate (PGi). The present
value of an agent's future rooftop PV maintenance costs (Pb(maint),i) is
given by (6), in which the present value of installation cost (Pb(install),i) is
multiplied by the agent's expected annual maintenance cost (PMi) and
the expected life of the solar panel array (i.e., 25 years). The NPV of
buying rooftop PV (NPVb,i) for agent i is given by (7), which is the
difference in the present value of total cash inflow and total cash out-
flow.

=P S W ITC( 1 )b install i i t t( ), (4)

= +
+=

P Q C PG
d

12 1
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NPV (buying rooftop PV through solar loan) – It is assumed that an
agent will borrow an amount equal to the cost of the PV system after
deducting income tax credits. Thus, calculating the present value of the
principal for agent i at time t (Ps,i) is equivalent to calculating the in-
stallation cost of paying cash (Pb(install),i), given in (4). Similarly, cal-
culating the present value of future total monthly bill savings (Ps(mbs),i)
and maintenance costs (Ps(maint),i) associated with solar loans is the
same as cash payment, given in (5) and (6), respectively. The agent
borrows the principal (Ps,i) through a simple interest loan at a monthly
interest rate of r% (assumed to be 0.5%). Each equal monthly install-
ment (Memi,i) is given by (8), where N is the total number of installments
the agent must pay toward the loan. A 10-year loan is assumed, such
that N equals 120. The present value of the monthly installments
(Ps(emi),i) is given by (9), where the total value of installments each year
is discounted by an annual discount rate of d% (assumed to be 5%). The
NPV of the rooftop PV loan option (NPVs,i) is given by (10).

= +
+

M P r i r
r

( )
(1 ) 1emi i s i

N

N, ,
(8)

=
+=

P
M

d
12

(1 )s emi i
t

emi i
t( ),

1

10
,

1 (9)

= +NPV P P P( )s i s mbs i s emi i s maint i, ( ), ( ), ( ), (10)

NPV (leasing rooftop PV) – If an agent decides to lease solar panels at
time t, its monthly leasing cost is determined by the solar installer and
depends on the size of the solar panel array (Si), the income tax credit
rate (ITCt) at time t, the installation cost (Ii), the solar installer's ex-
pected rate of return (PDs, assumed to be 5%), and the leasing period
(assumed to be 25 years). The solar installer's total cost (Ii) to install
solar panels for agent i is equivalent to the installation cost of paying
cash (Pb(install),i), given by (4), but the solar installer reaps the benefit of
income tax credits on behalf of the customer. Ii is recovered from the
consumer agent via the fixed monthly leasing cost (Mi) over 25 years.
The present value of the total maintenance cost (Pl(maint),i) for an agent i
over the next 25 years is given by (11). Pl(maint),i is evaluated by dis-
counting by PDs (the solar installer's expected return) the annual
maintenance cost (ms, assumed to be 3%) as a percentage of Ii over the
25-year leasing period. This total maintenance cost is also recovered by
the solar installer as a part of the monthly leasing cost (Mi).

Mi is evaluated using (12), which equates the sum of Ii and Pl(maint),i

Table 1
Financial parameters assigned to each agent type.

Parameter Description T1 T2 T3 T4

PGi Expectation of future annual growth rate
of electricity cost (%)

0.00 2.60 3.30 5.00

PMi Expectation of annual rooftop PV
maintenance cost as a percentage of up-
front system cost (%)

0.50 0.25 0.15 0.00
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to the then present value of the total future leasing cost that the con-
sumer agent will pay over the next 25 years. The NPV of the leasing
option (NPVl,i) for agent i is the difference between the present value of
the total savings in monthly energy bills over the next 25 years (eval-
uated using (5)) and the present value of the total monthly leasing cost
that the consumer pays over 25 years, as shown in (13).
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NPV (community solar) – In a typical community solar engagement,
a customer pays a fixed premium (Cp) per unit of energy in addition to
the conventional electricity rate at the time of adoption (Ct*), such that
the total unit price that the customer pays (Cp + Ct*) remains constant
for the life of the community solar program [55]. A similar pricing
structure is assumed in the model. The present value of an agent's total
monthly energy bills if it chooses to participate in a community solar
program (Pcs,i) at time t is given by (14), in which the discounted energy
bills are summed over 25 years. An agent's NPV of investing in com-
munity solar (NPVcs,i) is the difference between the present value of its
future monthly bills if it continues buying electricity from the utility
company (Pb(mbs),i – evaluated using (5)) and Pcs,i, given by (15).
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3.11.3. Sub-model 3 – consumer agent decision
For consumer agent i to adopt a particular renewable energy model,

its awareness index (AWi) must be greater than the threshold (AWh)
value, and the NPV of the renewable energy model must be greater than
0. Thus renters, apartment owners, and house-owners that cannot adopt
rooftop PV due to structural constraints will adopt community solar if
NPVcs,i is greater than 0 and AWi is greater than the AWh. However, if a
house-owner agent that can adopt rooftop PV has AWi greater than the
AWh and its NPV is greater than 0 for multiple renewable energy
models, its final selection depends on the values of its perceived com-
plexity (PCi), ownership index (Oi), and age-based index (ABi). A
random number is generated, and if the number is less than Oi, the
agent will prefer rooftop PV (either buy, loan, or lease) over community
solar. Otherwise, the agent will prefer the option with the highest ex-
pected NPV. This randomness is introduced to represent heterogeneity
in consumer behaviors that is not explicitly represented by the state
variables in the model. If a house-owner agent favors rooftop PV over
community solar, a random number is again generated. If the number is

less than ABi, the agent will adopt rooftop PV; otherwise, it will parti-
cipate in a community solar program. The choice of paying cash, taking
a solar loan, or leasing rooftop PV depends on PCi: a random number is
generated, and if it is greater than PCi, the agent will favor the option
with the highest expected financial returns (NPV value); otherwise, it
will lease rooftop PV. Fig. 1 summarizes the consumer agent decision
process in each time-step.

4. Experiments

The ABM was used to examine the impact of residential consumers’
renewable energy adoption decisions on critical performance metrics
for utility companies, policymakers, and solar installers, given different
combinations of renewable energy models for the consumers to choose
from. For each experiment, the output metric values were analyzed
over 120 monthly time-steps (i.e., 10 years), averaged over 50 re-
plications. A simulation run length of 10 years was chosen such that
potential future disruptions (e.g., the introduction of a new renewable
energy technology) could be reasonably ignored.

4.1. Experimental factors and levels

Model parameter settings were varied in six experiments, which are
summarized in Table 3. In each experiment, different renewable energy
models are available. For example, in experiment BLC(4), consumer
agents have three options: buy rooftop PV through up-front cash pay-
ment or solar loans, lease rooftop PV from solar installers, or participate
in a utility-sponsored community solar program at a premium (Cp) of 4
¢/kWh.

For all experiments, the rewiring probability (p) of the small-world
network is assumed to be 0.5, and the probability of interaction be-
tween two connected agents is assumed to be 0.5. All agents' awareness
threshold values (AWh) are initialized to 0.6. The sensitivity of model
outputs to varying the values of these parameters was tested. The re-
sults (summarized in Appendix B) indicate that the model's behavior is
robust, i.e., it is not predicated on a specific set of input parameter
values.

4.2. Model outputs

The outputs of interest include performance metrics that are aligned
with the objectives of key system stakeholders. These metrics are
summarized in Table 4 and are described in detail below:

4.2.1. Utility company
One key performance metric of interest to the utility company is the

present value of its revenues. In particular, utility companies are in-
terested in determining which renewable energy model(s) are best able
to help them recover the revenue losses resulting from increased con-
sumer rooftop PV adoption. Revenue is considered as a performance
metric for the utility company, rather than profit or gross margin, as it
is assumed that the utility buys electricity at the same cost either

Table 2
Logic determining consumer agent evaluation of renewable energy models NPV (Y: yes, N: no, NA: not applicable).

Agent Description Buy Rooftop PV (up-front
cash payment)

Buy Rooftop PV
(solar loan)

Lease Rooftop
PV

Community Solar

House-owner agents who are structurally capable of accommodating rooftop PV and
can afford to pay the up-front-cost to install PV systems

Y Y Y Y (CSi=1)
N (CSi=0)

House-owner agents who are structurally capable of accommodating rooftop PV but
cannot afford to pay the up-front-cost to install PV systems

N Y Y Y (CSi=1)
N (CSi=0)

House-owner agents who are not structurally capable of accommodating rooftop PV NA NA NA Y (CSi=1)
N (CSi=0)

Renters and apartment-owner agents NA NA NA Y (CSi=1)
N (CSi=0)
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Fig. 1. Flowchart of the consumer agent decision process in each time-step (”*“consumer agent's NPV should be greater than zero for at least one of the renewable
energy models). As indicated by the superscripts, the gray decision blocks are specific to the following agents: 1) house-owner agents that can adopt rooftop PV and
are aware of the community solar option, 2) house-owner agents that can adopt rooftop PV but are unaware of the community solar option, and 3) renters, apartment
owners, or house-owner agents that cannot adopt rooftop PV due to structural constraints, but are aware of the community solar option.
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through wholesale electricity market or via a PPA signed through a
community solar program [56]. The utility earns revenues from non-
adopters who buy their electricity from the utility at the market rate
(Ct) and from community solar adopters who pay the utility a fixed
electricity price (Cp + Ct*), where Ct* is the price of electricity at the
time of adoption, and Cp is the community solar premium. Present value
of the utility revenue is evaluated by summing the discounted total
revenue each year from non-adopters and community solar adopters
assuming an annual discount rate of 5%. Other key performance me-
trics for the utility are total green power added to the grid through
consumer adoption of community solar and rooftop PV and the incre-
mental community solar capacity increases that are needed to satisfy
the growing consumer demand for renewable energy. This metric is
important for the utility to understand the relative effectiveness of
different renewable energy models in meeting the RPS.

4.2.2. Policymakers
Key performance metrics of interest to policymakers are the total

number of renewable energy adopters as well as percentage of ‘re-
stricted’ population (renters, apartment owners, and house-owners that
cannot adopt rooftop PV due to structural constraints) participating in
renewable energy. These metrics allow policymakers to determine the
degree to which rebate programs for different renewable energy models
(e.g., rooftop PV and community solar) lead to their increased adop-
tions equitably.

4.2.3. Solar installers
The key performance metric for solar installers is the present value

of their revenues. This metric will help solar installers understand the
financial impact of offering consumers a rooftop PV leasing option, as
well as the impact of a utility-sponsored community solar program on
their own business. Because the model does not consider solar installers
as individual agents, the present value of revenue represents the total
revenue for all installers offering similar pricing for PV buying and
leasing. The present value of revenue for the solar installers is evaluated
as the sum of present value of revenues from consumers buying and
leasing rooftop PV. Present value from the PV buying option is eval-
uated by summing the discounted (annual rate of 5%) up-front cost of
each purchased rooftop PV system over 120 time-steps (10 years). The
present value of revenue from the PV leasing option is evaluated by
summing the discounted value of the annual leasing costs for each

adopter over 25 years from the year of adoption.

4.3. Data analysis

As not all of the output data was normally distributed, the Steel-
Dwass test (nonparametric version of the Tukey's HSD) was conducted
on each pairwise combination of experiments. Error bars in the figures
below represent 95% confidence intervals. The results are reported as
significant for a significance level alpha< 0.05. When two conditions
do not share a letter in the figures, they are significantly different from
one another.

5. Results

Fig. 2 compares the present value of the utility company's revenue
(in $1000s) over 10 years for each experiment. Present value of utility
company's revenue is evaluated using the method described in Section
4.2.1. Utility revenues are the greatest when community solar is
available and Cp is 3 and 4 ¢/kWh, with no significant difference in
revenues between BLC(3) (M=3278.3, SD=55.0) and BLC(4)
(M=3271.1, SD=59.9), (p= .99). However, the utility's revenue in
all six cases is less than the maximum revenue (represented by a hor-
izontal line in Fig. 2) it would have earned if no renewable energy
options were available and all agents were forced to purchase wholesale
market electricity.

The simulation results were further analyzed to determine the total
amount of green power (kW, DC) added to the grid by the rooftop PV
and community solar adopters combined. Fig. 3 shows that offering a
community solar program at premiums (Cp) of 2, 3 or 4 ¢/kWh yielded
the maximum total green power addition, with no significant difference

Table 3
Six experiments with different combinations of renewable energy models (Y:
available, N: not available).

Experiment Buy rooftop PV
(up-front cash
payment)

Buy rooftop
PV (solar
loan)

Lease
rooftop PV

Community solar
(Cp, ¢/kWh)

B Y Y N N
BL Y Y Y N
BLC(2) Y Y Y Y (Cp=2 ¢/kWh)
BLC(3) Y Y Y Y (Cp=3 ¢/kWh)
BLC(4) Y Y Y Y (Cp=4 ¢/kWh)
BLC(5) Y Y Y Y (Cp=5 ¢/kWh)

Table 4
Outputs metrics of interest.

Stakeholder Metric (unit) Time of capture

Utility company Present value of revenue ($1000) End of each monthly time-step
Total green power added to the grid (kW) End of 120 time-steps
Incremental community solar capacity increase (kW) End of each monthly time-step

Policymakers Total adopters (rooftop PV and community solar) End of each monthly time-step
Percentage of restricted population participating in renewable energy (%) End of 120 time-steps

Solar installers Present value of revenue ($1000) End of each monthly time-step

Fig. 2. Present value of utility company's revenue over 10 simulated years
(lower-case letters are used to indicate significant pairwise differences between
present value of utility company revenue across the six experiments; means that
do not share a letter are significantly different).

A. Mittal, et al. Renewable and Sustainable Energy Reviews 112 (2019) 1008–1020

1015



in the addition of green power between BLC(2), BLC(3), and BLC(4).
Fig. 4 shows the incremental community solar capacity increases

needed each year (kW, DC) to satisfy consumer demand for renewable
energy. The capacity increase is high in the first year for the BLC(2) and
BLC(3) scenarios but then drops and remains relatively low for the
remaining 9 years. In the BLC(4) scenario, this initial spike in required
capacity is more evenly distributed between years 1 and 2 but then also
drops off from the third year onward.

Fig. 5 shows the number of adopters of rooftop PV and community
solar at the end of 120 monthly time-steps for all six experiments. In-
troducing a community solar program, in addition to offering rooftop
PV buying and leasing options (i.e., the four BLC experiments), in-
creased the total number of adopters, compared with offering rooftop
PV buying (B) or buying/leasing (BL) only. Fig. 5 also shows that of-
fering community solar increased the number of rooftop PV adopters.
This somewhat counterintuitive result is a consequence of an overall
increase in the agents’ awareness values (AWi) with the inclusion of an
additional renewable energy option. Furthermore, although there were

fewer total adopters in BLC(5) than BLC(4), the number of rooftop PV
adopters significantly increased (BLC (4): M=52.5, SD=6.2, BLC(5):
M=57.5, SD=6.9), (p < .01), as some consumers preferred rooftop
PV over a community solar program with a high premium (Cp).

The cumulative number of adopters (rooftop PV and community
solar) each year for all six experiments is shown in Fig. 6. The rate of
solar adoption was much higher in BLC(2), BLC(3), BLC(4), and BLC(5)
than in the B and BL experiments. The rate of adoption remains fairly
constant until the eighth year, after which it begins to decrease in
BLC(2), BLC(3), BLC(4) and BLC(5) (also observable in Fig. 4). For
example, in the BLC(3) experiment, the percentage of consumer agents
adopting solar (rooftop PV and community solar) was 78.3% and 81.6%
at the end of 15 and 20 years, respectively.

Fig. 7 shows the percentage of the restricted population (renters,
apartment owners, and house-owners that cannot adopt rooftop PV due
to structural constraints) participating in renewable energy for all four
experiments in which consumers have the option to participate in a

Fig. 3. Total green power (kW) added to the grid in each experiment (lower-
case letters are used to indicate significant pairwise differences between total
green power added across the six experiments; means that do not share a letter
are significantly different).

Fig. 4. Incremental community solar (CS) capacity (kW) required to be added
by the utility company to meet consumer demand in each experiment.

Fig. 5. Total number of rooftop PV and community solar (CS) adopters at the
end of 10 simulated years (lower-case and upper-case letters are used to in-
dicate significant pairwise differences between number of rooftop PV and
community solar adopters across the six experiments, respectively; means that
do not share a letter are significantly different).

Fig. 6. Cumulative number of rooftop PV and community solar (CS) adopters
over 10 simulated years for each experiment.
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community solar program. Offering community solar at premiums (Cp)
of 2, 3 or 4 ¢/kWh results in maximum participation by the restricted
population, with no significant difference in the output between
BLC(2), BLC(3), and BLC(4).

Finally, the present value of solar installers revenue (in $1000s)
over 120 time-steps was captured for all six experiments (Fig. 8). Pre-
sent value of solar installer revenue is evaluated using the method de-
scribed in Section 4.2.3. Offering consumers, a rooftop PV leasing op-
tion in addition to the buying option (BL) did not significantly increase
solar installers revenue (B: M=783.4, SD=129.4, BL: M=789.6
SD=160.5), (p= .99). Furthermore, if the utility company offers a
community solar program at Cp values of 2 and 3 ¢/kWh (BLC(2) and
BLC(3), solar installers revenues do not change significantly. However,
when community solar is available at Cp values of 4 and 5 ¢/kWh
(BLC(4) and BLC(5)), solar installers revenue increases significantly, as
more agents adopt rooftop PV.

6. Discussion

6.1. Discussion of simulation results

The output from the six experiments provides insight into the degree
to which different renewable energy models support the objectives of
multiple energy system stakeholders (utility companies, policymakers,
and solar installers), while also meeting consumers' demand for re-
newable energy. The BLC(4) experiment yields the highest utility rev-
enue of all six experiments, which was earned through premiums paid
by community solar adopters among the restricted population who
otherwise would have been forced to purchase electricity from the
utility company at market rates. This enabled the utility company to
recover 46% of the revenue losses it experienced due to consumer
rooftop PV adoption in the B and BL scenario. The BLC(4) experiment
also results in one of the highest amounts of green power added to the
grid, which supports the utility's efforts to meet its renewable energy
portfolio requirements. Furthermore, the results of the BLC(4) experi-
ment address policymakers' equity concerns, yielding the largest
number of residential solar power adopters as well as greatest partici-
pation from the restricted population. Remarkably, high rates of com-
munity solar adoption in the BLC(4) experiment did not translate into
revenue losses for solar installers; in fact, both BLC(4) and BLC(5) ex-
periments yielded the highest present value of solar installers revenue
among the six experiments. This result is a consequence of the increased
number of social interactions that occurred between potential rooftop
PV adopters and the large number of early-adopting community solar
participants, such that the awareness of many potential adopters in-
creased in the early time-steps of the simulation.

Alternatively, the utility company could introduce a community
solar program at a premium of 3 ¢/kWh (experiment BLC(3)) and
achieve the same revenues and green power addition as BLC(4).
Experiments BLC(3) and BLC(4) have the same impact on overall solar
power adoption and are therefore equivalent in terms of addressing
policymakers’ equity concerns and satisfying consumer demand for
renewable energy. However, over a 10 year period, introducing com-
munity solar at 3 ¢/kWh instead of 4 ¢/kWh did not provide any added
benefits to the utility company with respect to their objectives but re-
stricted the potential of higher revenues for the solar installers (solar
installers revenues were significantly higher in BLC(4) over BLC(3)
experiment).

These results demonstrate that, through experimentation, the model
enables an exploration of the degree to which different renewable en-
ergy offerings could yield mutually beneficial outcomes for all stake-
holders. This is a particularly important consideration when certain
actions by one stakeholder can negatively impact the others. For ex-
ample, policymakers predict that increased availability of community
solar for residential consumers could rival the rooftop PV market within
a decade [57]. Therefore, an important contribution of the system-
based modeling approach proposed in this paper is its ability to inform
renewable energy model design decisions that avoid benefitting some
stakeholders at the unnecessary expense of others.

6.2. Practical significance of the model outputs

Simulation results indicate a consumer agent adoption rate as high
as 65%–70% for community solar and rooftop PV after 10 years in
scenarios BLC(2), BLC(3), and BLC(4). For these scenarios, the presence
of a community solar program provided increased access to solar for the
restricted population and for consumer agents that chose not to adopt
rooftop PV because of perceived installation complexity and/or risk of
moving. Such high adoption rates have been observed in utility terri-
tories that have introduced community solar programs for their con-
sumers. For example, within one year of introducing a community solar
program, the Cedar Falls Utility in Iowa gained 1200 (around 10% of
households) consumer adopters [58,59]. Likewise, a community solar

Fig. 7. Percentage of restricted population participating in community solar for
the four BLC experiments (lower-case letters are used to represent significant
differences in percentage of restricted population participating in community
solar across the four experiments; means that do not share a letter are sig-
nificantly different).

Fig. 8. Present value of solar installers revenue (lower-case letters are used to
indicate significant pairwise differences between present value of solar in-
stallers revenue across the six experiments; means that do not share a letter are
significantly different).
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project introduced in Fremont, Nebraska, had 200 adopters (demanding
a total capacity of 1.55MW) within 7 weeks [60]. As utilities transition
from centralized generation to more consumer-centric distributed
models [61], their ability to achieve high adoption rates can be en-
hanced by having consumers participate as stakeholders in the energy
infrastructure. This is particularly important for cities like Chicago,
which has committed to 100% renewable energy by 2035 [62].

The results of experimentation with the conceptual ABM presented
in this paper help demonstrate the phenomenon of interdependencies in
consumer adoption trends in the presence of different renewable energy
models. For example, model outputs indicated that rooftop PV adoption
rates may actually increase in the presence of a utility-sponsored
community solar option. This phenomenon was observed in the utility
territory of Cedar Falls Utilities (CFU), a municipally-owned public
utility in northeast Iowa. In an effort to meet consumer demand for
solar energy, in 2016 CFU introduced a 1.5MW community solar pro-
gram called ‘Simple Solar’. CFU initially introduced a 0.5MW project
with each share (i.e., each 170W panel) priced at $399. However, as a
result of strong customer demand, CFU increased the capacity of the
project to 1.5MW, which reduced the cost per share to $270, due to
economies of scale. This rate is competitive with that of an equivalent
rooftop PV system. As a consequence, the number of new residential
rooftop PV installations in CFU's territory initially reduced from five in
2015 to only one in 2016 (the year when the community solar program
was introduced). However, the number of customer enquiries on in-
terconnecting rooftop PV with the CFU grid were higher in 2017 than in
previous years, with four new residential installations that year [58],
likely due to increased awareness among the CFU territory residents
about renewable energy.

A mutually beneficial arrangement between energy stakeholders has
been observed in practice, as well. Xcel Energy, an investment-owned
utility based in Minneapolis, has introduced 169 community solar
programs throughout Minnesota to enable consumers become stake-
holders in the new energy infrastructure and add capacity to the grid
[63]. All of these community solar programs are owned and operated
by solar developers or investment companies and are connected to Xcel
Energy's system, which provides bill credits to subscribers. Another
example of a mutually beneficial partnership between utilities and solar
companies is located in New York, which has an aggressive target of
meeting 50% of its energy needs from renewable sources by 2030 [64].
The state government has encouraged utilities and solar companies to
jointly develop a proposal that would establish distributed energy re-
sources on the grid [65]. The partnership aims to reduce solar installers'
risk through increased solar adoption while at the same time ensuring
that utilities have sufficient financial resources to manage the grid.
Several utilities, including Consolidated Edison Company of New York,
New York State Electric & Gas Corporation, and Rochester Gas and
Electric have partnered with solar developers like SolarCity and Su-
nEdison to become alternative energy stakeholders [65]. Framing re-
newable energy policies such that key energy system stakeholders' ob-
jectives are aligned can lead to partnerships that increase solar
development and consumer participation, as well as improving the
electric distribution system.

6.3. Limitations and future research

This conceptual model has several limitations. The model does not
consider the potential for future disruptions in the energy sector, such
as the introduction of a new renewable energy technology or a sudden
drop/rise in electricity prices due to changing fuel prices, which can
significantly affect renewable energy adoption trends. The model also
has not yet been validated with empirical human behavior data. Finally,
as the model was intended as proof-of-concept, some of the assumptions
with respect to the agents' decision-making process were implemented
rather simplistically. For example, an agent's visual interactions were
modeled within a single community, which will be extended in the

future version of the model based on the actual locations of the con-
sumer agents.

Future model developments will focus on empirical validation. To
develop an empirically informed and validated ABM, an urban area in
southern California will serve as a case study in which consumers have
multiple renewable energy options. Geospatial and household-level
demographic data will be used to inform the model, as well as survey
data on consumer adoption behavior and preferences [66]. Model
outputs, such as the number of consumer agents adopting distributed
solar in a census block group (the smallest entity for which the U.S.
Census Bureau publishes the demographic data of its residents) will be
compared with historical adoption data for both spatial and numerical
validation. Agent-level validation will include a comparison of the de-
mographic characteristics of consumer agents from the ABM and the
demographics of actual adopters.

Upon validation, the ABM can be applied to other geographic re-
gions to study consumer adoption of different renewable energy
models, given consumer household-level characteristics (e.g., demo-
graphics), the serving utility's tariff structure, and available financial
incentives. It is important to account for differences in demographics
and other factors influencing consumer decision-making across dif-
ferent geographies. For example, community solar projects in different
regions of Wisconsin have different subscription rates, despite having
similar pricing and payment structures, due to differences in local de-
mographics [67]. The validated model can also be further extended to
incorporate other variations specific to certain geographic regions, such
as the effect of competition among utilities on their tariff structures in a
deregulated electricity market (e.g. the State of Texas in the U.S.).

7. Conclusion

This paper describes an ABM that was developed to predict con-
sumers' renewable energy adoption decisions in the presence of mul-
tiple competing models, as well as the effects of these decisions on
multiple energy system stakeholders’ objectives. Experimental results
suggest that, for a renewable energy system to be successful and sus-
tainable in the long term, design decisions should be made with con-
sideration given to the objectives of all key system stakeholders, in-
cluding utilities, solar installers, and policymakers, as well as the
heterogeneous preferences and objectives of consumers. The results
also demonstrate how mutually beneficial partnerships between sta-
keholders (e.g., utility companies and solar installers) and alternative
renewable energy models (e.g., community solar program) can help to
sustain equitable renewable energy systems.

The conceptual agent-based model described in this paper serves as
a starting point for the development of an empirically validated model.
Once validated, the model can be used by different stakeholders to help
them determine appropriate values for their respective business model
parameters. In particular, it could serve as a decision support tool for
utility companies and enable them to assess the ability of different al-
ternative renewable energy model structures to satisfy customer de-
mand for solar-based electricity and maintain their renewable energy
portfolios and revenues. Similarly, the model can be used to test the
effect of varying policy incentives, such as tax benefits, on adoption
patterns. The validated model can be used as a tool by solar installers to
find their next customer, given behavioral and decision-making attri-
butes. Finally, the model can help policymakers to gauge the likely
effects of different policies on improving equitable adoption of renew-
able energy among consumers.
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